Molecular phylogenetics and antimicrobial potentials of selected endophytic fungi associated with Curcuma longa Phylogénétique moléculaire et potentiels antimicrobiens d'une sélection de champignons endophytes associés à Curcuma longa
Main Article Content
Abstract
ENGLISH
Background: Curcuma longa, popularly known as turmeric, is a rhizomatous plant belonging to the Zingiberaceae family. This study is necessitated sequel to the dearth of information on endophytic fungi associated with this medicinal plant.
Objectives: This study aimed at isolating endophytic fungi from C. Longa and analyzing their antimicrobial potential.
Methods: The fungal endophytes were isolated from the surface-sterilized rhizomes on potato dextrose agar (PDA) and identified through morphological, microscopical, and internal transcribed spacer (ITS) sequencing. The base calling and consensus sequence was generated using the Geneious software version 9.0.5. The sequence was blasted and submitted to the NCBI database for accession numbers. The Phylogenetic analysis was done using the Geneious software upon MUSCLE alignment. The antimicrobial potential was challenged with some Gram positives and ESKAPE organisms by agar plug and Kirby-Baurer techniques.
Results: A total number of ten (10) fungal endophytes were isolated from thirty sliced samples explored and the preliminary antimicrobial assay revealed that only two isolates, CLR1 and CLR9 could produce antimicrobial secondary metabolites. The BLAST results revealed that they are closely related to Paecilomyces dactylethromorphus CBS 251.55 (NR_149330.1) and Aspergillus ochraceopetaliformis NRRL 4752 (NR_135390.1) at percentage identity of 99.65 % and 99.43 % respectively. Phylogenetic analysis confirmed the relationship between the isolates and known species. Ethyl acetate extract showed zones of growth inhibitions between
10±0.2 mm and 28±1.2 mm in diameter against tested organisms. Their crude extract showed MIC of 1.57 mg/ml to 20 mg/ml and MBC from 2.1 mg/ml to 20.8 mg/ml.
Conclusion: These findings suggest that Curcuma longa hosts fungal endophytes with antimicrobial potential, warranting further biotechnological exploration.
FRENCH
Contexte: Curcuma longa, communément appelé curcuma, est une plante rhizomateuse appartenant à la famille des Zingibéracées. Cette étude est rendue nécessaire par le manque d'informations sur les champignons endophytes associés à cette plante médicinale.
Objectifs: Cette étude vise à isoler les champignons endophytes de C. Longa et à analyser leur potentiel antimicrobien.
Méthodes: Les endophytes fongiques ont été isolés des rhizomes stérilisés en surface sur gélose dextrose de pomme de terre (PDA) et identifiés par séquençage morphologique, microscopique et par séquençage de l'espaceur interne transcrit (ITS). La séquence d'appel de base et la séquence consensus ont été générées à l'aide du logiciel Geneious version 9.0.5. La séquence a été blastée et soumise à la base de données NCBI pour les numéros d'accès. L'analyse phylogénétique a été réalisée à l'aide du logiciel Geneious après alignement MUSCLE. Le potentiel antimicrobien a été testé avec certains organismes Gram positifs et ESKAPE par des techniques de
bouchon d'agar et de Kirby-Baurer.
Résultats: Un nombre total de dix (10) endophytes fongiques ont été isolés à partir de trente échantillons tranchés explorés et l'essai antimicrobien préliminaire a révélé que seuls deux isolats, CLR1 et CLR9, pouvaient produire des métabolites secondaires antimicrobiens. Les résultats du test BLAST ont révélé qu'ils sont étroitement liés à Paecilomyces dactylethromorphe CBS 251,55 (NR_149330.1) et Aspergillus ochraceopetaliformis NRRL 4752 (NR_135390.1) avec des pourcentages d'identité de 99,65% et 99,43% respectivement. L'analyse phylogénétique a confirmé la relation entre les isolats et les espèces connues. L'extrait d'acétate d'éthyle a montré des zones d'inhibition de croissance entre 10±0,2 mm et 28±1,2 mm de diamètre contre les organismes testés. Leur extrait
brut a montré une CMI de 1,57 mg/ml à 20 mg/ml et une CMB de 2,1 mg/ml à 20,8 mg/ml.
Conclusion: Ces résultats suggèrent que Curcuma longa héberge des endophytes fongiques dotés d'un potentiel antimicrobien, ce qui justifie une exploration biotechnologique plus approfondie.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Miller WR, Arias CA (2024). ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nature ReviewsMicrobiology 22:598-616. https://doi.org/10.1038/s41579-024-01054-w.
2. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review, Frontiers in Microbiology 10:539.
3. Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, Alam J, Ashour HM (2023). Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities, Biomedicines 11(11):2937. doi: 10.3390/biomedicines11112937.
4. Mathur A, Parihar AS, Modi S, Kalra A (2023). Photodynamic therapy for ESKAPE pathogens: An emerging approach to combat antimicrobialresistance (AMR). Microbial Pathogenesis 183:106307. https://doi.org/10.1016/j.micpath.2023.106307.
5. Hyde KD, Baldrian P, Chen Y (2024). Current trends, limitations and future research in the fungi, Fungal Diversity. 12:51-71.
https://doi.org/10.1007/s13225-023-00532-5.
6. Naranjo-Ortiz MA, Gabaldón T (2019). Fungal evolution: major ecological adaptations and evolutionary transitions. Biological Reviews of theCambridge Philosophical Society. 94(4):1443-1476. doi: 10.1111/brv.12510.
7. Yu W, Pei R, Zhang Y, Tu Y, He B (2023). Light regulation of secondary metabolism in fungi. Journal of Biological Engineering 17(1):57. doi:10.1186/s13036-023-00374-4.
8. Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D (2022). The hidden power of secondarymetabolites in plant-fungi interactions and sustainable phytoremediation, Frontiers in Plant Science 13:1044896. doi:10.3389/fpls.2022.1044896.
9. Boraks A, Amend AS (2021). Fungi in soil and understory have coupled distribution patterns, PeerJ. 9:e11915. doi: 10.7717/peerj.11915.
10. Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, Hu Y (2022). Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies, Journal Fungi (Basel). 8(2):205. doi: 10.3390/jof8020205.
11. Jha P, Kaur T, Chhabra I, Panja A, Paul S, Kumar V, Malik T (2023). Endophytic fungi: hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Frontiers in Microbiology. 14:1227830. doi: 10.3389/fmicb.2023.1227830.
12. Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, Shukla KK (2023). Fungal Endophytes: Microfactories of Novel BioactiveCompounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal EndophyticBiology over the Last Decade, Biomolecules 13(7):1038. doi: 10.3390/biom13071038.
13. Alam B, L? J, G? Q, Khan MA, G?ng J, Mehmood S, Yuán Y, G?ng W (2021). Endophytic Fungi: From Symbiosis to Secondary Metabolite
Communications or Vice Versa? Frontiers in Plant Science 12:791033. doi: 10.3389/fpls.2021.791033.
14. Gautam AK, Verma RK, Avasthi S, Bohra Y, Devadatha B, Niranjan M, Suwannarach N (2022). Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. Journal Fungi (Basel). 8:226. doi: 10.3390/jof8030226.
15. Ezeonuegbu BA, Abdullahi MD, Whong CMZ, Sohunago JW, Kassem HS, Yaro CA, Hetta HF, Mostafa-Hedeab G, Zouganelis GD, Batiha GE (2022). Characterization and phylogeny of fungi isolated from industrial wastewater using multiple genes, Scientific Reports 12:2094. doi: 10.1038/s41598-022-05820-9.
16. Bhunjun CS, Phillips AJL, Jayawardena RS, Promputtha I, Hyde KD (2021). Importance of Molecular Data to Identify Fungal Plant Pathogensand Guidelines for Pathogenicity Testing Based on Koch's Postulates, Pathogens. 10:1096. doi: 10.3390/pathogens10091096.
17. Grabka R, d'Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S (2022). Fungal Endophytes and Their Role in Agricultural PlantProtection against Pests and Pathogens, Plants (Basel). 11:384. doi: 10.3390/plants11030384.
18. Akram S, Ahmed A, He P, Liu Y, Wu Y, Munir S, He Y (2023). Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. Journal Fungi (Basel). 9:72. doi: 10.3390/jof9010072.
19. George AS, Brandl MT (2021). Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops.Microorganisms. 9:2485. doi: 10.3390/microorganisms9122485.
20. Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH, (2023). Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles, Frontiers in Plant Science 14:1193573.doi: 10.3389/fpls.2023.1193573.
21. Britannica T (2024). Editors of Encyclopaedia, turmeric, Encyclopedia Britannica. https://www.britannica.com/plant/turmeric
22. Wang H, Liu Z, Duan F, Chen Y, Qiu K, Xiong Q, Lin H, Zhang J, Tan H (2023). Isolation, identification, and antibacterial evaluation of endophytic fungi from Gannan navel orange, Frontiers in Microbiology 14:1172629 doi:10.3389/fmicb.2023.1172629.
23. Khalil AMA, Hassan SE, Alsharif SM, Eid AM, Ewais EE, Azab E, Gobouri AA, Elkelish A, Fouda A (2021). Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting, Biomolecules 11(2):140. doi: 10.3390/biom11020140.
24. Dos Reis JBA, Lorenzi AS, do Vale HMM (2022). Methods used for the study of endophytic fungi: a review on methodologies and challenges, and associated tips, Archives of Microbiology 204(11):675. doi: 10.1007/s00203-022-03283-0.
25. Talukdar R, Padhi S, Rai AK, Masi M, Evidente A, Jha DK, Cimmino A, Tayung K (2023). Isolation and Characterization of an Endophytic Fungus Colletotrichum coccodes Producing Tyrosol From Houttuynia cordata Thunb. Using ITS2 RNA Secondary Structure and Molecular Docking Study. Frontiers in Bioengineering Biotechnology.9:650247. doi: 10.3389/fbioe.2021.650247.
26. Toppo P, Jangir P, Mehra N (2024). Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Scientific Reports 14:187. https://doi.org/10.1038/s41598-023-51057-5.
27. Gauchan DP, Kandel PT (2020) Evaluation of antimicrobial, antioxidant and cytotoxic propertiesof bioactive compounds produced fromendophytic fungi of Himalayan yew (Taxus wallichiana) in Nepal [version 2; peer review: 2 approved], F1000Research. 9:379.
28. Dos Santos IP, da Silva LC, da Silva MV, de Araújo JM, Cavalcanti MS, Lima VL (2015). Antibacterial activity of endophytic fungi from leaves ofIndigofera suffruticosa Miller (Fabaceae), Frontiers in Microbiology 6:350. doi: 10.3389/fmicb.2015.00350.
29. Balouiri M, Sadiki M, Ibnsouda SK (2016). Methods for in vitro evaluating antimicrobial activity: A review, Journal of Pharmaceutical Analysis. 6(2):71- 79. doi: 10.1016/j.jpha.2015.11.005.
30. Jayatilake PL, Munasinghe H (2020). Antimicrobial Activity of Cultivable Endophytic and RhizosphereFungi Associated with "Mile-a-Minute," Mikania cordata (Asteraceae). Biomed Research International 2020:5292571. doi:10.1155/2020/5292571.
31. Ezeobiora CE, Igbokwe NH, Amin DH, Okpalanwa CF, Mota'a SC, Mendie UE (2023). Antibacterial Potential of Endophytic Fungi from Xylopiaaethiopica and Metabolites Profiling of Penicillium sp. XAFac2 and Aspergillus sp. XAFac4 by GC-MS, Tropical Journal of Natural Product Research. 7(7):3538-3545. http://www.doi.org/10.26538/tjnpr/v7i7.37.
32. Umesha S, Manukumar HM, Raghava SA (2016). Rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech 12. https://doi.org/10.1007/s13205-016-0436-4.
33. Galliano I, Daprà V, Zaniol E, Alliaudi C, Graziano E, Montanari P, Calvi C, Bergallo M (2021). Comparison of methods for isolating fungal DNA, Practical Laboratory Medicine 25:e00221. doi: 10.1016/j.plabm.2021.e00221.
34. Hatamzadeh S, Akbari Oghaz N, Rahnama K (2024). Combination of a hierarchical and thermal shock process with a specific aqueous buffer: a safe, rapid and reliable DNA extraction method for plant endophytic fungi, Biologia. 79: 597 - 604. https://doi.org/10.1007/s11756-023-01579-0.
35. Terna PT, Mohamed N, Azuddin, NF (2024). Molecular identification and pathogenicity of endophytic fungi from corn ears. Sci Rep 14:17146. https://doi.org/10.1038/s41598-024-68428-1
36. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, MeintjesP, Drummond A (2020). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647-9. doi: 10.1093/bioinformatics/bts199.
37. Letunic I, Bork P (2024). Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool, Nucleic Acids Research 52:W78-W82, https://doi.org/10.1093/nar/gkae268
38. Singh VK, Kumar A (2023). Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis. 8:1-15. doi: 10.1007/s13199-023-00925-9.
39. Charria-Girón E, Espinosa MC, Zapata-Montoya A, Méndez MJ, Caicedo JP, Dávalos AF, Ferro BE, Vasco- Palacios AM, Caicedo NH (2021). Evaluation of the Antibacterial Activity of Crude Extracts Obtained From Cultivation of Native Endophytic Fungi Belonging to a Tropical Montane Rainforest in Colombia, Frontiers in Microbiology. 12:716523. doi: 10.3389/fmicb.2021.716523.
40. Gakuubi MM, Ching KC, Munusamy M, Wibowo M, and Liang Z, Kanagasundaram Y, Ng SB (2022). Enhancing the Discovery of Bioactive Secondary Metabolites From Fungal Endophytes Using Chemical Elicitation and Variation of Fermentation Media. Frontiers in Microbiology. 13:898976. doi: 10.3389/fmicb.2022.898976.
41. Jalil MTM, Zakaria NA, Suhaimi NSM, Ibrahim D (2022). Crude extracts of an endophytic fungus attenuate the growth of pathogenic bacteria in aquaculture, Iran Journal of Microbiology. 14:383- 394. doi: 10.18502/ijm.v14i3.9780.
42. Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry. 7:105-109. doi: 10.1080/26415275.2020.1796674.
43. Dai ZB, Wang X, Li GH (2020). Secondary Metabolites and Their Bioactivities Produced by Paecilomyces. Molecules. 25:5077. doi:
10.3390/molecules25215077.
44. Li XQ, Xu K, Liu XM, Zhang PA (2020). Systematic Review on Secondary Metabolites of Paecilomyces Species: Chemical Diversity and Biological Activity, Planta Med. 86:805-821. doi: 10.1055/a-1196-1906.
45. Idris FN, Nadzir MM (2023). Multi-drug resistant ESKAPE pathogens and the uses of plants as their antimicrobial agents, Archives of Microbiology. 205:115. doi: 10.1007/s00203-023-03455-6.
46. Salem SH, El-Maraghy SS, Abdel-Mallek AY (2022). The antimicrobial, antibiofilm, and wound healing properties of ethyl acetate crude extract of an endophytic fungus Paecilomyces sp. (AUMC 15510) in earthworm model. Scientific Reports. 12:19239. https://doi.org/10.1038/s41598-022-23831-4.
47. Ramos GDC, Silva-Silva JV, Watanabe LA, Siqueira JES, Almeida-Souza F, Calabrese KS, Marinho AMDR, Marinho PSB, Oliveira AS (2022). Phomoxanthone A, Compound of Endophytic Fungi Paecilomyces sp. and Its Potential Antimicrobial and Antiparasitic, Antibiotics (Basel). 11:1332. doi: 10.3390/antibiotics11101332.
48. Hashem AH, Attia MS, Kandil EK (2023). Bioactive compounds and biomedical applications of endophytic fungi: a recent review, Microbial Cell Fact. 22:107. https://doi.org/10.1186/s12934-023-02118-x
49. Caruso DJ, Palombo EA, Moulton SE, and Zaferanloo B (2022). Exploring the Promise of Endophytic Fungi: A Review of Novel Antimicrobial Compounds, Microorganisms. 10:1990. doi: 10.3390/microorganisms10101990.
50. Tiwari P, Bae H (2024). Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms. 10:360. doi: 10.3390/microorganisms10020360.
51. Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R (2023). Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants, Frontiers in Plant Science. 14:1248319. doi: 10.3389/fpls.2023.1248319.